Incremental partial least squares analysis of big streaming data
نویسندگان
چکیده
منابع مشابه
Multivariate analysis of fMRI data by oriented partial least squares.
Partial least squares (PLS) has been used in multivariate analysis of functional magnetic resonance imaging (fMRI) data as a way of incorporating information about the underlying experimental paradigm. In comparison, principal component analysis (PCA) extracts structure merely by summarizing variance and with no assurance that individual component structures are directly interpretable or that t...
متن کاملKernel Partial Least Squares for Stationary Data
We consider the kernel partial least squares algorithm for non-parametric regression with stationary dependent data. Probabilistic convergence rates of the kernel partial least squares estimator to the true regression function are established under a source and an effective dimensionality condition. It is shown both theoretically and in simulations that long range dependence results in slower c...
متن کاملPartial least squares for dependent data.
We consider the partial least squares algorithm for dependent data and study the consequences of ignoring the dependence both theoretically and numerically. Ignoring nonstationary dependence structures can lead to inconsistent estimation, but a simple modification yields consistent estimation. A protein dynamics example illustrates the superior predictive power of the proposed method.
متن کاملPartial least squares methods: partial least squares correlation and partial least square regression.
Partial least square (PLS) methods (also sometimes called projection to latent structures) relate the information present in two data tables that collect measurements on the same set of observations. PLS methods proceed by deriving latent variables which are (optimal) linear combinations of the variables of a data table. When the goal is to find the shared information between two tables, the ap...
متن کاملPartial Least Squares : Afirst - Order Analysis
The main contributions of this paper can be summarized as follows. First, we compare the Partial Least Squares (PLS) and the Principal Component Analysis (PCA), under fairly general conditions. (In particular, the existence of a true linear regression is not assumed.) We prove that PLS and PCA are equivalent, to within a rst-order approximation, hence providing a theoretical explanation for emp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2014
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2014.05.022